
 
Microsoft Data Science Workshop 
Lab  Setup and Instruction Guide 

Overview 
In this lab, you will learn how to build a Human Activity Classifier with Azure Machine Learning. This 
classifier predicts somebody’s activity class (sitting, standing up, standing, sitting down, walking) based 
on the use of wearable sensors. The point of this lab is to introduce you to the basics of creating and 
deploying a machine learning model in Azure ML, it is not intended to be a deep-dive into model design, 
validation and improvement. 

This lab environment contains the following tasks: 

1. Setup your Azure ML environment 
2. Get the data 
3. Build your model 
4. Publish your model 

What You’ll Need 
To perform the tasks, you will need the following: 

• A Windows, Linux, or Mac OSX computer. 
• A web browser and Internet connection. 

1. Setup your Azure ML environment 
There are several options to start with Azure ML: https://azure.microsoft.com/en-us/services/machine-
learning/ 

 

https://azure.microsoft.com/en-us/services/machine-learning/
https://azure.microsoft.com/en-us/services/machine-learning/


If you don't have an Azure account already, we recommend you to use the Free Workspace option. 
Therefore, you would have to sign up for a Microsoft account. If you don't have one already, you can sign up 
for one at https://signup.live.com/. 

2. Get the data 
This classifier predicts somebody’s activity class (sitting, standing up, standing, sitting down, walking). It 
is based on the Human Activity Recognition dataset. Human Activity Recognition (HAR) is an active 
research area, results of which have the potential to benefit the development of assistive technologies 
in order to support care of the elderly, the chronically ill and people with special needs. Activity 
recognition can be used to provide information about patients’ routines to support the development of 
e-health systems. Two approaches are commonly used for HAR: image processing and use of wearable 
sensors. In this case we will use information generated by wearable sensors (Ugulino et al, 2012). 

Understand the data source 
In this lab we use the Human Activity Recognition Data from its source: http://groupware.les.inf.puc-
rio.br/har#ixzz2PyRdbAfA. More info can also be found on the UCI repository.  
 
You can download the data from http://groupware.les.inf.puc-rio.br/static/har/dataset-har-PUC-Rio-
ugulino.zip and extract the downloaded zip file to a convenient folder on your local computer. 

The data has been collected during 8 hours of activities, 2 hours with each of the 2 men and 2 women, 
all adults and healthy. These people were wearing 4 accelerometers from LiliPad Arduino, respectively 
positioned in the waist, left thigh, right ankle, and right arm. This resulted in a dataset with 165634 rows 
and 19 columns. 

• user (text) 
• gender (text) 
• age (integer) 
• how_tall_in_meters (real) 
• weight (int) 
• body_mass_index (real) 
• x1 (type int, value of the axis ‘x’ of the 1st accelerometer, mounted on waist) 
• y1 (type int, value of the axis ‘y’ of the 1st accelerometer, mounted on waist) 
• z1 (type int, value of the axis ‘z’ of the 1st accelerometer, mounted on waist) 
• x2 (type int, value of the axis ‘x’ of the 2nd accelerometer, mounted on the left thigh) 
• y2 (type int, value of the axis ‘y’ of the 2nd accelerometer, mounted on the left thigh) 
• z2 (type int, value of the axis ‘z’ of the 2nd accelerometer, mounted on the left thigh) 
• x3 (type int, value of the axis ‘x’ of the 3rd accelerometer, mounted on the right ankle) 
• y3 (type int, value of the axis ‘y’ of the 3rd accelerometer, mounted on the right ankle) 
• z3 (type int, value of the axis ‘z’ of the 3rd accelerometer, mounted on the right ankle) 
• x4 (type int, value of the axis ‘x’ of the 4th accelerometer, mounted on the right upper-arm) 
• y4 (type int, value of the axis ‘y’ of the 4th accelerometer, mounted on the right upper-arm) 
• z4 (type int, value of the axis ‘z’ of the 4th accelerometer, mounted on the right upper-arm) 
• class (text, ‘sitting-down’, ’standing-up’, ‘standing’, ‘walking’, and ‘sitting’) 

 

2. Build the Human Activity Classifier 
Prepare the data 
Before you can use it to train a classification model you must prepare and upload the data:  

https://signup.live.com/
http://groupware.les.inf.puc-rio.br/har#ixzz2PyRdbAfA
http://groupware.les.inf.puc-rio.br/har#ixzz2PyRdbAfA
https://archive.ics.uci.edu/ml/datasets/Wearable+Computing%3A+Classification+of+Body+Postures+and+Movements+%28PUC-Rio%29
http://groupware.les.inf.puc-rio.br/static/har/dataset-har-PUC-Rio-ugulino.zip
http://groupware.les.inf.puc-rio.br/static/har/dataset-har-PUC-Rio-ugulino.zip
http://lilypadarduino.org/


1. Azure ML works with comma separated files. The original data file contains “;” as 
separator and will therefore be not suitable for uploading. We first have to open the 
downloaded csv file and convert it to a csv with “,” as a separator. Make sure you also 
have “.” for your decimals. If you have trouble creating such file, you can start with this 
starting experiment: https://gallery.cortanaintelligence.com/Experiment/Human-Activity-
Classifier-Step-1-Load-data.This will open a window where you have to sign in into Azure 
ML. 

2. Open a browser and browse to https://studio.azureml.net. Then sign in using the 
Microsoft account associated with your Azure ML account. 

3. Create a new blank experiment by clicking on the + NEW button in the left of your 
browser, and select EXPERIMENT, and subsequently BLANK EXPERIMENT. You can change 
the generated name into Human Activity Classifier. 

Upload the csv file to Azure ML and name it HAR dataset. To do this, you have to click on 
the + NEW button in the left lower corner of your browser, and select DATASET, and 
subsequently FROM LOCAL FILE. 

https://gallery.cortanaintelligence.com/Experiment/Human-Activity-Classifier-Step-1-Load-data
https://gallery.cortanaintelligence.com/Experiment/Human-Activity-Classifier-Step-1-Load-data
https://studio.azureml.net/


 
 

4. In the Human Activity Classifier experiment, go to My Datasets under Saved datasets, and drag 
the HAR dataset on the canvas, and click on RUN (menu below).  You will have to wait until the 
model is finished running before you can continue with the next step. 

 
5. To visualize the output of the dataset, right-click on the output port of the data module and  

select Visualize.  

 



Now you can review the data it contains. Note that the dataset contains the following variables: 
 

• user (string) 
• gender (string) 
• age (numeric) 
• how_tall_in_meters (numeric) 
• weight (numeric) 
• body_mass_index (numeric) 
• x1 (numeric) 
• y1 (numeric) 
• z1 (numeric) 
• x2 (numeric) 
• y2 (numeric) 
• z2 numeric) 
• x3 (numeric) 
• y3 (numeric) 
• z3 (numeric) 
• x4 (numeric) 
• y4 (numeric) 
• z4 (string) !!! 
• class (string) 

 
6. Ups, something went wrong: “z4” has been processed as a “string” instead of an 

“integer”. You can change this by using a few lines of R with the Execute R Script module. 
Drag the Execute R Script module on the canvas and use this code to convert “z4” to a 
numeric: 
 
# Map 1-based optional input ports to variables 
df <- maml.mapInputPort(1) # class: data.frame 
 
df$z4 <- as.numeric(df$z4) 
 
# Select data.frame to be sent to the output Dataset port 

maml.mapOutputPort("df"); 

 
You might ask yourself: why don’t you use the Edit Metadata module for that. Well, if we 
try that we will get an error that Azure cannot convert specific strings to an integer. 

7. After converting “z4” to an integer, we have to inspect the data if we miss any. Therefore, 
right-click on the Results dataset1 (left) output of the Execute R Script module. Although 
the UCI repository states that there are no missing values, we find that the “z4” column 
has 1 missing value. 

8. We will delete this row with the Clean Missing Data Module. Set the properties as 
follows: 

o  Columns to be cleaned: all 

o  Minimum missing value ratio: 0 



o  Maximum missing value ratio: 1 

o  Cleaning mode: entire row 

9. After cleaning the data, we can inspect the data. We start with some descriptive statistics 
using the Summarize Data module. 

10. Besides, we can inspect the correlation between the numeric columns using the using the 
Select Columns in Dataset module. Drag this module on the canvas and connect the 
output port of the Cleaning Missing Data module to the input port of the Select Columns 
in Dataset module. Now we have to select the numeric columns, using the WITH RULES, 
and starting with NO COLUMNS, and subsequently select Include, column types, 
Numeric: 

  
 

  



11. Now we can add the Compute Linear Correlation module to calculate the (Pearson's) 
correlation. Observe that there is a strong correlation between length 
(how_tall_in_meters), weight (weight) and b.m.i. (body_mass_index). This is not 
surprising as b.m.i is calculated based on length and weight. 

 
 

12. Based on prior logic, we will remove ‘body_mass_index’ using the Select Columns in 
Dataset module. Here we also exclude ‘user’, as we don’t need this identifier later on in 
our model. Select the Select Columns in Dataset module, and in the Properties pane 
launch the column selector. Then use the column selector to exclude the following 
columns: 
 
o user 
o  body_mass_index 

 
You can use the With Rules page of the column selector to accomplish this as shown here: 
 



 

13.  Now we transform gender to be a categorical variable by adding an Edit Metadata 
module to the experiment, and connect the Select Columns in Dataset output to its input. 
Set the properties of the Edit Metadata module as follows: 
o  Column: gender  
o  Data type: Unchanged 
o  Categorical: Make categorical 
o  Fields: Features 
o  New column names: Leave blank 

 
14. We will do a likewise transformation with our dependent variable “class”, and set it to a 

categorical variable and define it as our label. Add an Edit Metadata module to the 
experiment, and connect the Edit Metadata output to its input. Set the properties of the 
Edit Metadata module as follows: 
o  Column: Edit Metadata class  
o  Data type: Unchanged 
o  Categorical: Make categorical 
o  Fields: Label 
o  New column names: Leave blank 

 
15. When the experiment has finished running, visualize the output of the Edit Metadata 

module and verify that: 
o  The columns you specified have been removed. 
o  All numeric columns now have a Feature Type of Numeric Feature. 
o  All string columns now have a Feature Type of Categorical Feature. 

 
  



Create and Evaluate a Classification Model 
Now that you have prepared the data, you will construct and evaluate a classification model. The goal of 
this model is to identify a human activity and to find out if somebody is ‘sitting-down’, ’standing-up’, 
‘standing’, ‘walking’, or ‘sitting’. 

16. We are now ready to split the data into separate training and test datasets. We will train the model 
with the training dataset, and test the model with the test dataset. Therefore, add a Split Data 
module to the Human Activity Classifier experiment, and connect the output of the Edit Metadata 
module to the input of the Split Data module. Set the properties of the Split Data module as 
follows: 

o Splitting mode: Split Rows 
o Fraction of rows in the first output dataset: 0.7 
o Randomized split: Checked 
o Random seed: 123 
o Stratified split: False 

 
17. Add a Train Model module to the experiment, and connect the Results dataset1 (left) output of 

the Split Data module to the Dataset (right) input of the Train Model module. In the Properties 
pane for the Train Model module, use the column selector to select the class column. This sets 
the label column that the classification model will be trained to predict. 
 

18. Add a Multiclass Decision Forest module to the experiment, and connect the output of the 
Multiclass Decision Forest module to the Untrained model (left) input of the Train Model 
module. This specifies that the classification model will be trained using the multiclass decision 
forest algorithm. 
 

19. Set the properties of the Multiclass Decision Forest module as follows: 
o Resampling method: Bagging 
o Create trainer mode: Single Parameter 
o Number of decision trees: 8 
o Maximum depth of decision trees: 32 
o Number of random splits per node: 128 
o Minimum number of samples per leaf: 1 
o Allow unknown categorical levels: Checked 

 
20. Add a Score Model module to the experiment. Then connect the output of the Train Model 

module to the Trained model (left) input of the Score Model module, and connect the Results 
dataset2 (right) output of the Split Data module to the Dataset (right) input of the Score 
Model module. 
 

21. On the Properties pane for the Score Model module, ensure that the Append score columns 
to output checkbox is selected. 
 

22. Add an Evaluate Model module to the experiment, and connect the output of the Score model 
module to the Scored dataset (left) input of the Evaluate Model module. 

23. Verify that your experiment resembles the figure below, then save and run the experiment. 
 



 



24. When the experiment has finished running, visualize the output of the Score Model module, 
and compare the predicted values in the Scored Labels column with the actual values from the 
test data set in the class column. 
 

25. Visualize the output of the Evaluate Model module, and review the results (shown below). We 
see the score per class. Then review the Overall Accuracy figure for the model, which should be 
around 0.994. This indicates that the classifier model is correct 99% of the time, which is a good 
figure for an initial model, keeping in mind the original distribution of the classification (see 
below). 

 
 

 
 
Detailed Accuracy from the original paper 

Correctly Classified Instances  164662  99.4144 % 

Incorrectly Classified Instances  970  0.5856 % 

Root mean squared error  0.0463   

Relative absolute error   0.7938 %   

Relative absolute error   0.7938 %   



 

Detailed Accuracy by Class 

TP Rate FP Rate Precision  Recall  F-Measure  ROC Area  Class 

0.999  0  1   0.999  0.999   1   Sitting 

0.971  0.002  0.969   0.971  0.970   0.999   Sitting down 

0.999  0.001  0.998   0.999  0.999   1   Standing 

0.962  0.003  0.969   0.962  0.965   0.999   Standing up 

0.998  0.001  0.998   0.998  0.998   1   Walking 

0.994  0.001  0.994   0.994  0.994   1   Weighted Avg. 

3. Publish your Human Activity Classifier 
Publish the Model as a Web Service 

26. Make sure you have saved and ran the experiment. With the Human Activity Classifier 
experiment open, click the SET UP WEB SERVICE icon at the bottom of the Azure ML Studio 
page and click Predictive Web Service [Recommended]. A new Predictive Experiment tab will 
be automatically created. 
 

27. Verify that, with a bit of rearranging, the Predictive Experiment resembles this figure: 

 



28. We can now start to remove variables we don’t need for prediction. Besides eliminating 
“user”, and “bmi” we can now also remove “class”, as we want that as output from the 
model. Therefore, you can drag the Select Columns in Dataset module up, add “class” to be 
removed, and connect it to the original dataset and the output to the Execute R Script 
module. 
 

29. Besides, we will make sure to use a numeric value for “z4”, so we can move the Webservice 
input and connect it directly to the Edit Metadata module where we make “gender” 
categorical. 
 

30. For this experiment, we will also make sure to send complete records, so we remove the 
Clean Missing Data module.  
 

31. Delete the connection between the Score Model module and the Web service output 
module. 
 

32. Add a Select Columns in Dataset module to the experiment, and connect the output of the 
Score Model module to its input. Then connect the output of the Select Columns in Dataset 
module to the input of the Web service output module. 
 

33. Select the Select Columns in Dataset module, and use the column selector to select only the 
Scored Labels column. This ensures that when the web service is called, only the predicted 
value is returned. 
 

34. Ensure that the predictive experiment now looks like the following, and then save and run the 
predictive experiment: 

 
 

 

35. When the experiment has finished running, visualize the output of the last Select Columns in 



Dataset module and verify that only the Scored Labels column is returned. 
 

Deploy and Use the Web Service 
36. In the Human Activity Classifier [Predictive Exp.] experiment, click the Deploy Web Service 

icon at the bottom of the Azure ML Studio window. 
 

37. Wait a few seconds for the dashboard page to appear, and note the API key and 
Request/Response link. You will use these to connect to the web service from a client 
application. 

 
 

38. You have several options to connect to the webservice. To test this webservice, you can click 
on New Web Services Experience (preview). This will open a new browser. 
 

39. Here you have the option to test your model (Test endpoint option under BASICS): 

 
40. When clicking on Test endpoint, you have the option to enable the usage of sample data, 

which will generate a sample record to test your model with: 



 
41. After enabling this sample data, you will see the generated sample data: 

 
42. The final step would be pressing the Test Request-Response button: what kind of activity is 

this woman doing according to your model? 
 

43. Another option is to click on the blue TEST button.  

 
 

44. This will open a pop-up window, where you can fill out some test values:



 
 

45. The last option is to open an Excel file, which will automatically create sample data. Opening 
this file will add the Azure Machine Learning add-in to the workbook. If that doesn’t work, or 
you don’t have Excel on your laptop, you could follow the next steps to make a workbook 
online: 
 

46. Open a new browser tab. 
 

47. In the new browser tab, navigate to https://office.live.com/start/Excel.aspx. If prompted, sign 
in with your Microsoft account (use the same credentials you use to access Azure ML Studio.) 
 

48. In Excel Online, create a new blank workbook. 
 

49. On the Insert tab, click Office Add-ins. Then in the Office Add-ins dialog box, select Store, 
search for Azure Machine Learning, and add the Azure Machine Learning add-in as shown 
below: 

 
 
 
 

https://office.live.com/start/Excel.aspx


50. After the add-in is installed, in the Azure Machine Learning pane on the right of the Excel 
workbook, click Add Web Service. Boxes for the URL and API key of the web service will appear. 
 

51. On the browser tab containing the dashboard page for your Azure ML web service, right-click 
the Request/Response link you noted earlier and copy the web service URL to the clipboard. 
Then return to the browser tab containing the Excel Online workbook and paste the URL into 
the URL box. 
 

52. On the browser tab containing the dashboard page for your Azure ML web service, click the 
Copy button for the API key you noted earlier to copy the key to the clipboard. Then return to 
the browser tab containing the Excel Online workbook and paste it into the API key box. 
 

53. Verify that the Azure Machine Learning pane in your workbook now resembles this, and click 
Add: 

 
 

54. After the web service has been added, in the Azure Machine Learning pane, it is opened on 
2. Predict. Here you have the option to generate sample data by clicking on Use sample data. 
This enters some sample input values in the worksheet. 
 

55. Select the cells containing the input data (cells A1 to P6), and in the Azure Machine Learning 
pane, click the button to select the input range and confirm that it is ‘Sheet1’!A1:P6. 
 
 

56. Ensure that the My data has headers box is checked. 
 

57. In the Output box type Q1, and ensure the Include headers box is checked. 
 

58. Click the Predict button, and after a few seconds, view the predicted label in cell Q2. 



 
 

59. Change some values of row 2 and click Predict again. Then view the updated label that is 
predicted by the web service. 
 

60. Try changing a few of the input variables and predicting the human activity class. You can 
add multiple rows to the input range and try various combinations at once. 

 

Summary 
By completing this lab, you have prepared your environment and data, and built and deployed your 
own Azure ML model. We hope you enjoyed this introductory lab and that you will build many more 
machine learning solutions! 
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